Effects of copper sulfate-oxidized or myeloperoxidase-modified LDL on lipid loading and programmed cell death in macrophages under hypoxia

نویسندگان

  • Benoit Vlaminck
  • Damien Calay
  • Marie Genin
  • Aude Sauvage
  • Noelle Ninane
  • Karim Zouaoui Boudjeltia
  • Martine Raes
  • Carine Michiels
چکیده

Atheromatous plaques contain heavily lipid-loaded macrophages that die, hence generating the necrotic core of these plaques. Since plaque instability and rupture is often correlated with a large necrotic core, it is important to understand the mechanisms underlying foam cell death. Furthermore, macrophages within the plaque are associated with hypoxic areas but little is known about the effect of low oxygen partial pressure on macrophage death. The aim of this work was to unravel macrophage death mechanisms induced by oxidized low-density lipoproteins (LDL) both under normoxia and hypoxia. Differentiated macrophages were incubated in the presence of native, copper sulfate-oxidized, or myeloperoxidase-modified LDL. The unfolded protein response, apoptosis, and autophagy were then investigated. The unfolded protein response and autophagy were triggered by myeloperoxidase-modified LDL and, to a larger extent, by copper sulfate-oxidized LDL. Electron microscopy observations showed that oxidized LDL induced excessive autophagy and apoptosis under normoxia, which were less marked under hypoxia. Myeloperoxidase-modified LDL were more toxic and induced a higher level of apoptosis. Hypoxia markedly decreased apoptosis and cell death, as marked by caspase activation. In conclusion, the cell death pathways induced by copper sulfate-oxidized and myeloperoxidase-modified LDL are different and are differentially modulated by hypoxia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of oxidatively modified low density lipoproteins on expression of platelet-derived growth factor by human monocyte-derived macrophages.

Platelet-derived growth factor (PDGF) is secreted by several cells that participate in the process of atherogenesis, including arterial wall monocyte-derived macrophages. Macrophages in human and non-human primate lesions have recently been demonstrated to contain PDGF-B chain protein in situ. In developing lesions of atherosclerosis, macrophages take up and metabolize modified lipoproteins, le...

متن کامل

Cholesterol or triglyceride loading of human monocyte-derived macrophages by incubation with modified lipoproteins does not induce tissue factor expression.

Macrophages/foam cells localized in cholesterol- and triglyceride-rich regions of atherosclerotic plaques express high levels of tissue factor (TF), the essential cofactor and receptor of factor VIIa. It is not clear whether modified lipoproteins, for which several agonistic effects on macrophages have been described, are independent stimuli of TF expression in these cells. Therefore, we studie...

متن کامل

Minimally oxidized LDL offsets the apoptotic effects of extensively oxidized LDL and free cholesterol in macrophages.

OBJECTIVE Lipid-loaded macrophage-derived foam cells populate atherosclerotic lesions and produce many pro-inflammatory and plaque-destabilizing factors. An excessive accumulation of extensively oxidized low-density lipoprotein (OxLDL) or free cholesterol (FC), both of which are believed to be major lipid components of macrophages in advanced lesions, rapidly induces apoptosis in macrophages. I...

متن کامل

REDD2 gene is upregulated by modified LDL or hypoxia and mediates human macrophage cell death.

OBJECTIVE Cholesterol accumulation in macrophages is known to alter macrophage biology. In this article we studied the impact of macrophage cholesterol loading on gene expression and identified a novel gene implicated in cell death. METHODS AND RESULTS The regulated in development and DNA damage response 2 (REDD2) gene was strongly upregulated as THP-1 macrophages are converted to foam cells....

متن کامل

Myeloperoxidase and hypochlorite, but not copper ions, oxidize heparin-bound LDL particles and release them from heparin.

A key factor in atherosclerosis is the retention of low density lipoprotein (LDL) in the extracellular matrix of the arterial intima, where it binds to the negatively charged glycosaminoglycan chains of proteoglycans. Oxidation may lead to modification of the lysine residues of apolipoprotein B-100 of LDL, which normally mediate the binding of LDL to glycosaminoglycans. Here, we studied whether...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014